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Abstract

Purpose One in eight women will develop breast cancer,

15–20% of whom will have triple-negative breast cancer

(TNBC), an aggressive breast cancer with no current targeted

therapy. We have demonstrated that riluzole, an FDA-ap-

proved drug for treating amyotrophic lateral sclerosis, inhibits

growth of TNBC. In this study, we explore potential syner-

gism between riluzole and paclitaxel, a chemotherapeutic

agent commonly used to treat TNBC, in regulating TNBC

proliferation, cell cycle arrest, and apoptosis.

Methods TNBC cells were treated with paclitaxel and/or

riluzole and synergistic effects on cell proliferation were

quantified via MTT assay and CompuSyn analysis. Apop-

tosis was observed morphologically and by measuring

cleaved PARP/caspase three products. Microarray analysis

was performed using MDA-MB-231 cells to examine cell

cycle genes regulated by riluzole and any enhanced effects

on paclitaxel-mediated cell cycle arrest, determined by

FACS analysis. These results were confirmed in vivo using

a MDA-MB-231 xenograft model.

Results Strong enhanced or synergistic effects of riluzole on

paclitaxel regulation of cell cycle progression and apoptosis

was demonstrated in all TNBC cells tested as well as in the

xenograft model. The MDA-MB-231, SUM149, and SUM229

cells, which are resistant to paclitaxel treatment, demonstrated

the strongest synergistic or enhanced effect. Key protein kina-

ses were shown to be upregulated in this study by riluzole as

well as downstream cell cycle genes regulated by these kinases.

Conclusions All TNBC cells tested responded synergisti-

cally to riluzole and paclitaxel strongly suggesting the

usefulness of this combinatorial treatment strategy in

TNBC, especially for patients whose tumors are relatively

resistant to paclitaxel.

Keywords Riluzole � Triple-negative breast cancer � Cell

cycle � Apoptosis � Paclitaxel

Introduction

According to the American Cancer Society, one in eight

women in the U.S. will develop breast cancer [1], and

approximately 15% of these cases will be triple-negative
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breast cancer (TNBC), an aggressive subtype of breast

cancer that does not respond to drugs targeting the estrogen

receptor (ER) or HER2 [2]. Although newer regimens are

becoming more accepted, standard-of-care chemotherapy

for TNBC still typically consists of concurrent doxorubicin

and cyclophosphamide, followed by a taxane [2]. Unfor-

tunately, these drugs are not targeted therapies, and they

often fail to completely eradicate the tumor, resulting in

recurrence [3–5]. In addition, this multidrug chemotherapy

regimen induces toxic side effects. As such, a targeted

therapy, such as tamoxifen for the ER? breast cancer

subtype and trastuzumab for the HER2? breast cancer

subtype, would be highly desirable for TNBC.

To identify a targeted agent for TNBC, in a previous

study we reported that TNBC expresses higher levels of

metabotropic glutamate receptor-1 (mGluR1) than non-

cancerous epithelium and other breast cancer subtypes

[6, 7]. Additionally, we identified mGluR1 as a pro-tumor

and pro-angiogenic factor [6–8]. Studies in melanoma have

shown that riluzole, an FDA-approved orally available

drug used to treat amyotrophic lateral sclerosis [9, 10],

functions as an mGluR1 inhibitor resulting in reduced cell

proliferation and tumor growth [11, 12]. Our results

showed that riluzole inhibits TNBC proliferation, invasion,

and colony formation, strongly suggesting a role for rilu-

zole in the systemic therapy of TNBC [7, 8, 13]. However,

the correlation between mGluR1 levels in TNBC cells and

inhibition of cell growth using riluzole was not as tight as

demonstrated to be in melanoma. Additionally, mGluR1

knockdown and overexpression studies found little effect

on cell sensitivity to riluzole [13], suggesting that in TNBC

riluzole also works through mGluR1-independent path-

ways, which may involve inhibition of various signaling

pathways involving PI30K, Akt, or PKC [14–17].

The goal of this study is to determine whether com-

bining riluzole with paclitaxel, currently part of the stan-

dard of care for TNBC, in preclinical models of TNBC

results in synergistic or additive anti-tumor effects. Pacli-

taxel is known to inhibit cell growth by inhibiting spindle

function attributed to its suppression of microtubule

dynamics [18]. However, resistance remains a significant

problem when using paclitaxel to treat TNBC [19, 20]. Our

results demonstrate a strong synergistic or enhanced effect

of riluzole and paclitaxel on cell growth and apoptosis in

both TNBC cell lines and a TNBC xenograft model.

Materials and methods

Reagents and cell culture

Cell culture reagents were purchased from Life Tech-

nologies (Carlsbad, CA) except fetal bovine serum (FBS),

purchased from Thermo Fisher Scientific (Waltham, MA).

Human SUM TNBC cell lines were a kind gift from Dr.

Stephen P. Ethier. All other cell lines (MDA-MB-231,

MDA-MB-468, BT549) were purchased from ATCC. Cell

lines were authenticated via cytogenetic analysis and used

within 6 months of purchase or stored in liquid nitrogen for

future use.

Cell proliferation

To determine whether riluzole and paclitaxel synergisti-

cally inhibit proliferation of TNBC cells, MTT assays

were performed as previously described [13]. Briefly,

cells were treated with riluzole (Sigma-Aldrich, 1–50 lM)

and paclitaxel (Invitrogen, 0.5–25 nM), at constant ratio

of 1:2000 (riluzole:paclitaxel). Cell viability was deter-

mined on day 3 by MTT assay [13]. In some experiments,

cell numbers were determined in parallel with the MTT

assay by counting manually on a hemocytometer. To

assess the interaction between riluzole and paclitaxel,

CompuSyn 1.0 software was used to generate isoboles.

Using this method of isoboles [21], the dose-effect data of

individual drugs measured above was used to determine

the expected combination and then statistically compared

to the actual combination effect measured to determine

synergism, additivity, or anti-additive interactions. The

combination index (CI) at different Fa levels was also

determined using this software based on the following

equation:

CI ¼ ðDÞ1=ðDxÞ1 þ ðDÞ2=ðDxÞ2:

Western blot analysis of cleaved PARP and caspase

3 proteins

Cells were treated with riluzole (5 or 10 lM) and/or

paclitaxel (5–10 nM) and collected by scraping in RIPA

lysis buffer (Santa Cruz, CA). Protein (10–30 lg) was

separated by SDS-PAGE and transferred to PVD mem-

branes. Detection of PARP and caspase 3 cleavage prod-

ucts was performed using respective primary and

secondary antibodies (Cell Signaling Technology, Danvers,

MA) and detected by chemiluminescence. Primary blots

were reprobed with anti-GAPDH antibody (Novus Bio-

logicals, Littleton, CO).

Live cell analysis

SUM149 cells were treated with riluzole (15 lM) and/or

paclitaxel (7.5 nM) for 72 h. Cell images were captured on

a Nikon Ti E-Series inverted microscope and morpholog-

ically analyzed.
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Cell cycle analysis

MDA-MB-231 and SUM149 cells were treated with rilu-

zole and/or paclitaxel and stored in PBS/ethanol at 4 �C
before incubation with anti-phospho-Ser/Thr-Pro MPM-2

(EMD Millipore Corp, Temecula, CA), that recognizes

proteins phosphorylated by M-phase promoting factor

followed by anti-mouse IgG (Sigma-Aldrich). Cells were

washed, incubated in 10 lg/ml RNase A and 20 lg/ml PI

(Sigma-Aldrich), and analyzed by FACS. Cells were trea-

ted with fixable viability dye eFluor 450 (eBioscience; San

Diego, CA) before ethanol fixation.

Microarray analysis of riluzole mediated pathways

MDA-MB-231 cells were treated with riluzole (25 lM) or

vehicle and RNA isolated using RNeasy Plus Mini Kit

(Qiagen, Valencia, CA) including an extra DNase step.

RNA was quality assessed using the 2100 Bioanalyzer

System and hybridized to the Illumina� Human HT-12v4

array then washed, stained, and scanned. The data gener-

ated were uploaded to BeadStudio, background-corrected,

and normalized using rank invariant algorithm. Differen-

tially expressed genes were identified using the Illumina

Custom Error Model and genes differentially expressed

were uploaded to Genomatix software suite to determine

over-represented canonical pathways. The online DAVID

tool was used to determine Gene Ontology Biological

Process terms over-represented by the data.

RT-PCR analysis of M-phase regulators

TNBC cells were treated with riluzole (37.5 or 15 lM) or

vehicle (0.1% DMSO) and RNA extracted using RNeasy

Plus Mini Kit (Qiagen). Reverse transcription was per-

formed with 2 lg RNA using High-capacity cDNA Rev-

erse Transcription Kit (Life Technologies). PCR was

performed using ABsolute QPCR Mix (Thermo Scientific)

with the following sense/anti-sense oligonucleotide

primers:

PLK1 Sense 50-TACCTTGTTAGTGGGCAAACC-30

Anti-sense 50-GGGTTGATGTGCTTGGGAATA-30

CDC25B Sense 50-GTGCTTGGTCTGTTTGACTTTAC-30

Anti-sense 50-GACCGAGTGGGTAACTGATATTT-30

CCNB1 Sense 50-GATGCAGAAGATGGAGCTGAT-30

Anti-sense 50-TCCCGACCCAGTAGGTATTT-30

CCNB2 Sense 50-GATCCCTCAGCTGAACTCAAA-30

Anti-sense 50-GGCACAATGAAGCACACATC-30

CDC25C Sense 50-CATCCACAAGAGAGGAAGGAAG-30

Anti-sense 50-GACATCTGGACAGACGGTAAAG-30

GAPDH Sense

50-ACA ACT TTG GTA TCG TGG AAG

G-30

Anti-sense 50-CAG TAG AGG CAG GCA TGA TGT

TC-30

For tissue samples, RNA was isolated from tissue (50 mg)

using the RNeasy Plus Universal Mini Kit (Qiagen) and

RT-PCR performed as described above.

Xenografts

MDA-MB-231 cells (1 9 106) in Matrigel (1:1) were

injected into mammary fat pads of female SCID/beige

mice, 6 and 8 weeks old (Envigo; Haslett, MI) and allowed

to grow until xenografts reached a mean size of

40–50 mm3 (approximately 2 weeks), at which point they

were divided into eight experimental groups, consisting of

ten mice per group, such that the means did not vary more

than 10%. Treatment then began with paclitaxel (2.7, 4.5,

7.2 mg/kg) alone or together with 18 mg/kg riluzole or

vehicle (DMSO). Paclitaxel was administered i.v. three

times a week and riluzole was given i.p. five times per

week. Tumor size was measured three times a week using a

Vernier caliper and calculated using the following formula:

length 9 width 9 depth/2. Treatment continued until

tumors in control group either reached a volume of

1000 mm3 or ulcerated, whichever came first. For cell

cycle gene analysis, a second xenograft study was per-

formed as described above but mice only received 1 week

of treatment with either riluzole (18 mg/kg) or vehicle

(DMSO). After treatment, tumors were harvested and snap

frozen in liquid nitrogen until gene analysis.

Statistical analyses

Numerical data were analyzed using GraphPad Prism

(v.7.0) for Macintosh. Unless otherwise indicated, all

numerical results are expressed as mean ± SEM and sta-

tistical analysis performed by one-way or two-way repe-

ated measures analysis of variance (ANOVA) followed by

multiple comparison procedure with Student–Newman

Keuls method. A value of p B 0.05 or p B 0.01 was con-

sidered significant. For Compusyn analyses, the conformity

of data to the mass action law was confirmed for all

treatment groups by p B 0.05. Differentially expressed

genes using Illumina platform were identified using the

Illumina Custom Error Model. A p value was associated

with every differential call and genes with a p value more

than 0.05 were discarded. In addition, genes were discarded

if fold-change in expression was less than 1.3.
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Results

Riluzole and paclitaxel act synergistically to inhibit

cell proliferation of various TNBC cells

Cell proliferation in various TNBC cell lines was measured

after treatment with riluzole and/or paclitaxel. As expected,

riluzole significantly inhibited cell proliferation in a dose-

dependent manner in all TNBC cell lines tested, with ED50

values ranging from 5 to 20 lM (Fig. 1), consistent with

previous studies [13]. Paclitaxel also significantly inhibited

cell proliferation in all TNBC cells but with a wider range

of ED50 values, ranging from 4 to 40 nM. MDA-MB-231,

SUM149, and SUM229 cell lines had higher ED50 values

and never reached 75% inhibition suggesting resistance to

paclitaxel compared to other cell lines. With the combined

dose, growth inhibition was significantly enhanced in all

TNBC cells compared to paclitaxel treatment alone

(Fig. 1). Isobologram analysis using CompuSyn software

determined that the enhanced effect of the combined

treatment in all cell lines was synergistic for at least one of

the fractional effect (Fa) doses demonstrated in the

isobologram and determined by CI values (Fig. 2 and

Table 1). Interestingly, the strongest synergistic effect (i.e.,

synergism at all Fa doses) was observed in the more

resistant cell lines (MDA-MB-231, SUM149, and

SUM229).

Riluzole and paclitaxel together enhance cell

apoptosis of various TNBC cells

Synergy between riluzole and paclitaxel inhibiting TNBC

cell growth suggested that apoptosis might also be

enhanced with combined treatment. To test this hypothesis,

we incubated TNBC cells with riluzole (5–10 lM) and

paclitaxel (5–10 nM) together or alone and assessed cells

for proteolytic cleavage of PARP and caspase-3. Even at

low doses of riluzole or paclitaxel, PARP and caspase-3

p17 and p19 cleavage products were detected 24 h after

treatment (Figs. 3, 4a). Enhanced levels of both PARP and
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Fig. 1 Riluzole and paclitaxel inhibit cell proliferation of various

TNBC cells. Cells were plated in RPMI containing 5% FBS at

1 9 104 cells/well in 96-well plates and treated with varying

concentrations of riluzole and paclitaxel at a constant ratio of

1:2000 (paclitaxel to riluzole). Cell proliferation was determined on

day three using MTT assay and initial absorbance on day of treatment

was subtracted from absorbance on day 3 and results expressed as

percentage of vehicle (0.05% DMSO)-treated control. Results

represent three experiments performed in triplicate and graphed using

GraphPad Prism software. Two-way ANOVA test was performed on

the data where *p\ 0.05, **p\ 0.01, ***p\ 0.001 when compar-

ing combined treatment to paclitaxel alone. For all cell lines tested,

inhibition of cell proliferation was significantly greater in the

presence of paclitaxel and riluzole together compared to paclitaxel

treatment alone
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caspase-3 cleavage products with the combined treatment

were also detected as early as 24 h in all cell lines tested

with the strongest enhanced effect demonstrated in MDA-

MB-231, SUM149, and SUM229 cells. Live cell imaging

of SUM149 cells revealed condensation of chromatin

(pyknosis) and nuclear fragmentation (karyorrhexis), both

signs of apoptosis/necrosis, after treatment with riluzole or

paclitaxel, which was also enhanced by combined treat-

ment (Fig. 4b).

Riluzole increases M-phase proteins and arrests cells

in M-phase

To determine how riluzole mediates cell cycle arrest

leading to apoptosis, cDNA microarray analysis was per-

formed with vehicle- and riluzole-treated MDA-MB-231

cells. After 24 h treatment, 290 genes were found differ-

entially expressed in the riluzole-treated group (see Online

Resource 1 for complete gene list) [22]. A majority of

these genes fall into six major canonical pathways that

play key roles in cell cycle regulation (Table 2). Further

analysis of these differentially regulated genes using the

DAVID tool show these genes map to categories associ-

ated with mitosis, cell division, and cell cycle progression

(Table 3). qPCR analysis of TNBC cells treated for 24 h

with riluzole or vehicle confirmed differential expression

of up to five of these genes (PLK1, CDC25B, CDC25C,

CCNB1, CCNB2) which are major regulators of mitosis

(Fig. 5). All of these genes were significantly upregulated

by riluzole (37.5 lM) in the MDA-MB-231 cells com-

pared to vehicle-treated cells except for PLK1 which was

upregulated by 24% but not significantly different from

vehicle cells. In the other TNBC cells, only two or three of

the genes were significantly upregulated. However, these

Dose A = Riluzole (µM)
Dose B = Paclitaxel (µM)

BT549 SUM102 SUM229

MDA-MB-231 SUM159MDA-MB-468SUM149

Fig. 2 Riluzole and paclitaxel inhibit cell proliferation in a syner-

gistic manner. Isobolograms of the data generated in Fig. 1 demon-

strating synergism in all cell lines tested. Isobolograms were

generated using CompuSyn 1.0 software. Using this method, the

dose–effect data of the individual drugs measured above were used to

determine the expected combination and then statistically compared

to the actual combination effect measured to determine whether there

was synergism, additivity, or anti-additive interactions. These results

are expressed in an isobologram that graphs the effective doses of

inhibition at 50% (Fa 0.5), 75% (Fa 0.75), and 90% (Fa 0.9) for the

individual drugs as x- and y-intercept values. Synergism is demon-

strated in all cell lines by the dose pair plotting as a point (symbol)

below their respective Fa isobole or line

Table 1 Combination Index (CI) values for riluzole/paclitaxel

combination treatment

Cell line CI values

Fa = 0.50 Fa = 0.75 Fa = 0.90

MDA-MB-231 0.86 0.52 0.34

SUM149 0.54 0.53 0.53

MDA-MB-468 0.98 0.75 0.58

SUM159 0.78 0.82 0.89

BT549 0.96 0.85 0.76

SUM102 1.07 0.97 0.87

SUM229 0.68 0.48 0.35

Synergistic (CI\ 1); Additive (CI = 1); Antagonistic (CI[ 1)

Breast Cancer Res Treat (2017) 166:407–419 411

123



cells were stimulated with a much lower concentration of

riluzole (15 lM) because of low EC50 values determined

in MTT assays.

Cell cycle FACS analysis using anti-MPM2 antibody in

conjunction with standard propidium iodide DNA staining

demonstrated a dramatic and significant increase in the

percentage of cells in M-phase after 24 h riluzole treatment

in both MDA-MB-231 and SUM149 cells (seven- and

fourfold, respectively) compared to control (Fig. 6), asso-

ciated with a significant decrease in the percentage of G1-

phase cells in both cell lines by 33.7 and 32.3%, respec-

tively. Paclitaxel also significantly increased M-phase cells

in both cell lines compared to vehicle-treated cells but the

effect was not as dramatic in SUM149 cells as in MDA-

MB-231 cells (60% vs. eightfold, respectively). This

difference is probably due to treatment of SUM149 cells

with a lower concentration of paclitaxel (7.5 nM compared

to 64 nM for MDA-MB-231), based on MTT EC50 values.

Similar to riluzole treatment, this increase in M-phase cells

in both MDA-MB-231 and SUM149 cell lines correlated

with a significant decrease in the number of cells in G1-

phase by 67 and 50%, respectively. Treatment of both cell

lines with riluzole and paclitaxel together significantly

increased the percentage of cells in M-phase compared to

paclitaxel treatment alone, although not as dramatically in

the MDA-MB-231 cells as in SUM149 cells (55% and 3.7-

fold increase, respectively). This is not surprising since

paclitaxel alone induced an eightfold increase in the per-

centage of M-phase cells in MDA-MB-231 cells. This

increase in M-phase cells with the combined treatment
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Fig. 3 Riluzole and paclitaxel together enhance cell apoptosis.

a Cells were plated in RPMI containing 5% FBS at 1 9 106 cells

per 100 mm dish and allowed to grow for 48 h before treatment with

riluzole (5–10 lM) and/or paclitaxel (5–10 nM). After 24 h treat-

ment, cells were collected, protein isolated, and PARP cleavage

detected by Western analysis. Blots are representative of at least two

experiments. b Representative density graph of the blots in (a) where

PARP cleavage values are normalized to their respective GAPDH

values
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correlated with a significant decrease in S-phase cells by

greater than 50% in both cell lines when compared to

paclitaxel treatment alone.

Riluzole enhances tumor growth inhibition

by paclitaxel in vivo

Our results thus far suggest that riluzole and paclitaxel

together could act synergistically in patients. To validate

this hypothesis in a preclinical model, we used an MDA-

MB-231 TNBC xenograft model in which tumor-bearing

mice were treated with riluzole (18 mg/kg) or paclitaxel

at three concentrations (2.7, 4.5, 7.2 mg/kg), alone or

together, and tumor growth inhibition (TGI) was deter-

mined and compared between groups (Fig. 7a). The two-

drug combination produced at their respective highest

non-toxic total doses a TGI of 100% with eight out of the

nine mice below the limit of palpation (i.e., below 63 mg)

on day 49 (day of harvest). This result was superior to

either agent at equivalent dose monotherapy (riluzole: 1%

TGI; paclitaxel: 92% TGI with only four out of eight

mice below tumor palpation limit). Lower dose

B
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A

Fig. 4 Confirmation of enhanced apoptosis by riluzole/paclitaxel in

TNBC cells. a Various TNBC cells were plated at 1 9 106 cells per

100 mm dish and allowed to grow for 48 h before treatment with

riluzole (5–10 lM) and/or paclitaxel (5–10 nM). After 24 h treat-

ment, cells were collected and the caspase 3 cleavage products, p17

and p19, were detected by Western analysis. Blots are representative

of at least two experiments. b Microscopic images of live SUM149

cells from (a) imaged before collecting for Western analysis. Images

confirm enhanced apoptotic cells in the combined treatment demon-

strated by arrows which indicate either increased pyknosis (blue),

karyorrhexis (green), or membrane blebbing and apoptotic body

formation (red)

Table 2 Canonical pathways and associated genes in MDA-MB-231 cells regulated by riluzole

Canonical pathway p value Observed genes

PLK1 signaling events 5.75E-12 CCNB1, CDC25B, KIF20A, AURKA, TPX2, CENPE, NDC80, PLK1

Aurora B signaling 4.16E-10 KIF23, KIF20A, AURKA, NDC80, KIF2C, CENPA, RACGAP1

Aurora A signaling 1.72E-07 CDC25B, AURKA, DLGAP5, TPX2, TACC3, CENPA, NFKBIA, BIRC5

FOXM1 transcription factor network 2.13E-06 CCNB1, CCNE1, CDC25B, NEK2, PLK1, CENPA, CCNB2, BIRC5

CDK regulation of DNA replication 4.95E-04 CCNE1, MCM2, MCM5, MCM6

PLK3 signaling events 9.09E-03 CCNE1, CDC25C
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combination groups more closely tracked the efficacy

effects of single agent paclitaxel at equivalent doses over

riluzole and were found to be sub-therapeutic (TGI values

\58%). Despite this, of note is the observation that the

two lower combination doses each produced 1–2 mice

below tumor palpation limit by day 49, suggesting there

was at minimum, an additive or potentiating effect of

riluzole on paclitaxel efficacy.

A second animal study was undertaken to ascertain

whether riluzole could arrest tumor cells in M-phase cell

cycle. For this study, once xenografts reached a mean size

of 40–50 mm3, they were treated for only 1 week with

riluzole or vehicle at their respective highest non-toxic total

doses and RNA isolated and analyzed for various cell cycle

genes. Similar to in vitro results, riluzole-treated mouse

tissue expressed significantly more cell cycle genes asso-

ciated with mitosis compared to vehicle-treated tissue

(Fig. 7b). This effect of riluzole was more dramatic than

the in vitro results with a greater than twofold increase in

all genes analyzed except CCNB1, which was still signif-

icantly increased by 75%.

Discussion

TNBC makes up a minority of human breast cancers but is

responsible for a disproportionate number of deaths [23].

TNBC responds well initially to taxane-containing

chemotherapy regimens but rapidly develops resistance.

Thus, finding new combinatorial treatments to optimize

Table 3 Gene Ontology

Biological Process terms over-

represented in riluzole-treated

MDA231 cells

Biological process term Bonferroni p value

M-phase 5.25E-25

Mitosis 1.77E-23

M-phase of mitotic cell cycle 2.83E-23

Regulation of mitotic cell cycle 4.15E-07

Spindle organization 1.57E-06

Regulation of cell cycle process 3.91E-06

Regulation of nuclear division 5.82E-06

Regulation of mitosis 5.82E-06

Spindle checkpoint 1.09E-04

Meiosis 1.43E-04

M-phase of meiotic cell cycle 1.43E-04

Establishment of chromosome localization 2.21E-04

Mitotic spindle organization 2.21E-04

Mitotic cell cycle checkpoint 3.99E-04

Centrosome cycle 4.61E-04

Cellular amino acid metabolic process 5.02E-04

Amino acid activation 5.18E-04

tRNA aminoacylation for protein translation 5.18E-04

Regulation of mitotic metaphase/anaphase transition 7.19E-04

Cellular amine metabolic process 8.34E-04

Cell cycle checkpoint 8.62E-04

Establishment of spindle orientation 9.62E-04

Establishment of mitotic spindle orientation 9.62E-04

Establishment of mitotic spindle localization 1.78E-03

Centrosome organization 2.18E-03

Establishment of spindle localization 2.83E-03

Microtubule organizing center organization 2.83E-03

Mitotic sister chromatid segregation 3.07E-03

Negative regulation of mitotic metaphase/anaphase transition 3.44E-03

Mitotic cell cycle spindle assembly checkpoint 3.44E-03

Negative regulation of nuclear division 4.10E-03

Negative regulation of mitosis 4.10E-03

Oocyte maturation 4.82E-03

Protein–DNA complex assembly 6.42E-03
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their clinical usefulness is imperative. In this study, we

demonstrate an enhanced or synergistic effect of riluzole

and paclitaxel on cell cycle progression and apoptosis in

TNBC cell lines as well as the MDA-MB-231 tumor

model. Some TNBC cell lines, such as MDA-MB-231,

SUM149, and SUM229 cells, responded more strongly

whereas responses in other cell lines were less dramatic.

This is expected given that TNBC does not have a single

dominant driver of tumorigenicity, hampering efforts to

develop targeted drugs against this subtype. That all TNBC

cell lines tested responded synergistically to this combi-

nation treatment strongly suggests the usefulness of this

combinatorial treatment strategy in TNBC.

Surprisingly, the effect of riluzole monotherapy on

xenograft growth was modest with tumors in these mice

becoming refractory to continuous riluzole monotherapy, a

different result compared to our previous studies in nu/nu

mice or the 4T1 syngeneic tumor model [6–8]. Both these

animal models have a fully intact immune system except

for functional T-cells, in the case of the nu/nu mice. In the

current study, SCID beige mice were used which lack both

T- and B-cells and have impaired NK cell activity. This

suggests that the immune system may be playing a role in

mediating riluzole’s anti-tumor effect in mice and could be

responsible for refractoriness to riluzole demonstrated in

this immune-deficient animal model. In support of this,

riluzole has been shown to increase survival of CD8 T-cells

in HIV-1-infected individuals and enhance proliferation of

anti-CD3/CD28-stimulated T-cells [24].

Key serine/threonine protein kinases (PLK1, Aurora

A-B, CDK, and PLK3) were upregulated by riluzole as

well as their downstream cell cycle genes. These serine/

threonine kinase receptors play key roles in regulating

mitosis, and upregulation of these kinases suggests either a

direct effect of riluzole on the regulation of these protein

kinase pathways or an indirect effect resulting from rilu-

zole’s effects on other key aspects of cell proliferation or

cell survival. In melanoma, a majority of riluzole’s anti-

tumor effect is mediated through glutamate signaling,

specifically mGluR1 [11, 12]. However, we previously

determined that a significant proportion of riluzole’s anti-

tumor activity in breast cancer likely derives from mech-

anisms other than mGluR1-mediated signaling [13]. In the

current study, we show significant down-regulation of
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Fig. 5 Riluzole increases M-phase proteins in TNBC cells. Various

TNBC cells were treated overnight with riluzole and mitotic cell

cycle genes (PLK1, CDC25B, CDC25C, CCNB1, CCNB2) detected

by RT-QPCR and normalized to GAPDH as the reference gene.

Results are representative of two experiments, performed in triplicate

where *p\ 0.05 compared to vehicle-treated cells
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genes regulating lipid metabolism in MDA-MB-231 cells.

Further analysis of these genes and their role(s) in medi-

ating cell growth and proliferation may provide insight into

the mechanism by which riluzole regulates growth of

TNBC.

The strongest synergism between riluzole and paclitaxel

was observed in SUM229, MDA-MB-231, and SUM149

cells, with increased synergism corresponding with the

relative resistance of these cells to paclitaxel. Interestingly,

other studies have reported that SUM149 and SUM229

0

50

100

%
 li

ve
 c

el
ls

G1
S
G2

vehicle riluzole
 (15 µM)

paclitaxel
 (7.5 nM)

both

M-phase

** ** , #

#

* 

* * *

*

0

25

50

75

100

125

%
 li

ve
 c

el
ls

vehicle riluzole
 (32 µM)

paclitaxel
 (64 nM)

both

*
** **

**,#

* **
**

* * **, #
SUM149MDA-MB-231

0 50K 100K 150K 200K 250K
PI-A

0

102

103

104

105

FI
TC

-A
: B

53
0 

M
PM

-2

MPM+
1.15

0 50K 100K 150K 200K 250K
PI-A

MPM+
17.6

0 50K 100K 150K 200K 250K

PI-A

MPM+
19.9

0 50K 100K 150K 200K 250K
PI-A

MPM+
30.3

vehicle riluzole paclitaxel bothA

0 50K 100K 150K 200K 250K
PI-A

0

102

103

104

105

FI
TC

-A
: B

53
0 

M
PM

-2

MPM+
3.29

0 50K 100K 150K 200K 250K
PI-A

MPM+
17.7

0 50K 100K 150K 200K 250K
PI-A

MPM+
5.54

0 50K 100K 150K 200K 250K
PI-A

MPM+
25.6

SUM149

MDA-MB-231

B

Fig. 6 Riluzole and paclitaxel together enhance M-phase arrest in

TNBC cells. MDA-MB-231 and SUM149 cells were treated

overnight with riluzole and/or paclitaxel and the number of cells in

M-phase, G2, S, or G1 were determined by FACS analysis.

a Representative scatter plots of live cells staining positive for

MPM-2 proteins (PI and FITC positive), proteins that are phospho-

rylated by M-phase promoting factor during mitosis. Riluzole

increases and number of cells in M-phase for both MDA-MB-231

and SUM149 cells and riluzole and paclitaxel together (both) induce a

higher percentage of cells expressing MPM-2 proteins compared to

their respective vehicle control or paclitaxel-treated cells. b The data

generated from the scatterplots above and from standard propidium

iodide DNA staining were analyzed and graphed using prism

software. G2 is calculated by subtracting percent of cells in M-phase

from the G2/M values. The results are expressed as the percent of total

live cells and are the average mean ± SEM of two experiments,

performed in duplicate where *p\ 0.05 and **p\ 0.01 compared to

vehicle control cells and #p\ 0.05 compared to paclitaxel treatment

alone. Riluzole significantly increases the percentage of cells in

M-phase compared to vehicle-treated alone in both cell types and the

percent of cells in M-phase is significantly greater in the combined

treatment groups compared to paclitaxel treatment alone
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cells are resistant to paclitaxel [19] and that this resistance

is associated with overexpression of cell surface EGFR and

loss of PI3 K regulation resulting from PTEN loss [25, 26].

This constitutive EGF-PTEN-independent EGFR signaling

pathway drives inflammatory and anti-apoptotic pathways

[19, 27, 28] and has been demonstrated as a common

pathway associated with a drug-resistant subset of TNBC

[20, 29]. The strong synergistic effect of riluzole and

paclitaxel demonstrated in SUM229 and SUM149 cells

suggests that this combinatorial treatment could be effec-

tive in treating this of TNBC with a dysregulated EGFR

subgroup.

Recently, studies in melanoma have demonstrated an

inhibitory effect of riluzole on glutamate-mediated PI3 K/

AKT signaling, an observation that has been tentatively

confirmed in a human phase 0 trial [14, 16, 17]. Interest-

ingly, PI3 K is dysregulated in EGFR-PTEN null TNBC

which results in high constitutive AKT expression and is

the driving force regulating tumor growth in these cells

[30]. This observation has been confirmed in another study

demonstrating that AKT inhibition can effectively kill this

subset of TNBC [31]. Therefore, it appears that riluzole,

through inhibition of AKT activity, may inhibit tumor

growth in the EGFR-PTEN null subgroup of TNBC

patients as well as other AKT-driven breast cancer sub-

types [29, 32, 33]. Further studies of how riluzole regulates

AKT phosphorylation and the specificity of the AKT

family, will be useful in the development of therapeutics

agents for treating paclitaxel-resistant tumors.

In addition to AKT, riluzole inhibits PKC alpha activity

in mixed mouse cortical cultures by directly binding to the

catalytic domain [15]. PKC alpha is known to regulate

EGFR-mediated tumor growth in prostate cancer [34]

where riluzole is an effective anti-tumor agent [35]. This

suggests in TNBC that riluzole may mediate its anti-tumor

effects through inhibition of either PKC alpha, AKT

activity, or both since PKC alpha is a known positive

regulator of AKT activity [36].

These results demonstrate synergistic and enhanced

effects of riluzole and paclitaxel on growth and apoptosis

in both TNBC cells as well as in vivo in a MDA-MB-231

xenograft TNBC tumor model. In addition, we also identify

novel key protein kinases upregulated by riluzole and

downstream cell cycle genes regulated by these kinases.

These results suggest that riluzole will be useful for treat-

ing TNBC, tumors resistant to paclitaxel. Further studies

into signaling pathways and targets effected by riluzole in

TNBC will be critical to the design of clinical trials

employing this drug as well as in the future design of new

drugs targeting these pathways.
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